In an era when plumbing systems are continuing to advance from metal to plastics, contractors are speculating which plastic piping system is best. The right answer can be found by learning some technical facts about crosslinked polyethylene (PEX) pipe — a flexible, durable, plastic piping material that has been used for decades in plumbing and floor heating pipe applications worldwide.
While all PEX pipe must adhere to specific standards for temperature and pressure ratings and pipe-wall thickness, many variables in the manufacturing methods of PEX affect pipe performance. This article will address four technical attributes of PEX to guide you in choosing the best plumbing system for a structure.
No. 1: Uniform crosslinking for the greatest durability
Crosslinking of a polymer results in a network of molecules that are chemically bonded together, rather than solely maintaining individual polymer molecules. By crosslinking high-density polyethylene (HDPE) to get PEX, this process improves the pipe’s ability to maintain pressure holding capabilities at elevated temperatures. It also provides several other mechanical properties.
Polyethylene is comprised of a backbone of carbon atoms with attached hydrogen atoms. During the crosslinking process, the carbon atoms in the individual HDPE molecule bond to the carbon atoms in other HDPE molecules. As a result, the carbon chains are bonded together to form a strong network.
Currently, there are three methods to produce PEX, called PEX-a, PEX-b and PEX-c. With the Engel-method PEX-a manufacturing process, there are no “interference” atoms between the HDPE molecules. Hence, this achieves a direct carbon-to-carbon bonding and the highest degree of crosslinking (around 85%) for the most flexible and durable PEX AI PEX piping product.
The high-temperature, hot-extrusion, single-step process of PEX-a ensures the required high-degree and uniform crosslinking between carbon chains, offering improved properties, such as:
Strength;
Greater flexibility to accommodate expansion and contraction in freezing conditions; and
Better resistance to stress-cracking.
Additionally, the unique properties of PEX-a allow kink repairs with a simple shot of heat from a heat gun.
Silane PEX-b pipe introduces a silicon-oxygen-silicon segment between the individual HDPE molecules, so no direct carbon-to-carbon bonds are achieved in the crosslinking process. This method results in 65% to 70% crosslinking for a much stiffer and less flexible piping product.
PEX-c uses an electron beam to change the molecular structure of the pipe (i.e., crosslink) after the extrusion process, resulting in 70% to 75% crosslinking for a slightly stiffer piping product.
Both PEX-b and PEX-c crosslinking are carried out at lower temperatures in a less controlled, lengthy post-extrusion process. This results in lower crosslinking densities for a stiffer piping product that is not as durable in freeze/thaw conditions and is more susceptible to stress cracking. Additionally, kinks in PEX-b and PEX-c pipes cannot be repaired; if you get a kink, you have to cut in a coupling.